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ABSTRACT
In this paper we present STMX, a high-performance Com-
mon Lisp implementation of transactional memory.

Transactional memory (TM) is a concurrency control mech-
anism aimed at making concurrent programming easier to
write and understand. Instead of traditional lock-based code,
a programmer can use atomic memory transactions, which
can be composed together to make larger atomic memory
transactions. A memory transaction gets committed if it re-
turns normally, while it gets rolled back if it signals an error
(and the error is propagated to the caller).

Additionally, memory transactions can safely run in parallel
in different threads, are re-executed from the beginning in
case of conflicts or if consistent reads cannot be guaranteed,
and their effects are not visible from other threads until they
commit.

Transactional memory gives freedom from deadlocks and
race conditions, automatic roll-back on failure, and aims at
resolving the tension between granularity and concurrency.

STMX is notable for the three aspects:

• It brings an actively maintained, highly optimized trans-
actional memory library to Common Lisp, closing a
gap open since 2006.

• It was developed, tested and optimized in very limited
time - approximately 3 person months - confirming
Lisp productivity for research and advanced program-
ming.

• It is one of the first published implementations of hy-
brid transactional memory, supporting it since August
2013 - only two months after the first consumer CPU
with hardware transactions hit the market.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.3 [Language Constructs
and Features]: Concurrent programming structures; F.1.2
[Modes of Computation]: Parallelism and concurency;
D.2.13 [Reusable Software]: Reusable Libraries; D.2.11
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1. INTRODUCTION
There are two main reasons behind transactional memory.

The first is that in recent years all processors, from high-end
servers, through consumer desktops and laptops, to tablets
and smartphones, are increasingly becoming multi-core. Af-
ter the Pentium D (2005), one of the first dual-core con-
sumer CPU, only six years passed to see the 16-core AMD
Opteron Interlagos (2011). Supercomputers and high-end
servers are much more parallel than that, and even tablets
and smartphones are often dual-core or quad-core. Concur-
rent programming has become mandatory to exploit the full
power of multi-core CPUs.

The second reason is that concurrent programming, in its
most general form, is a notoriously difficult problem [5, 6, 7,
11, 12]. Over the years, different paradigms have been pro-
posed to simplify it, with various degrees of success: func-
tional programming, message passing, futures, π-calculus,
just to name a few.

Nowadays, the most commonly used is multi-threading with
shared memory and locks (mutexes, semaphores, conditions
...). It is very efficient when used correctly and with fine-
grained locks, as it is extremely low level and maps quite
accurately the architecture and primitives found in modern
multi-core processors. On the other hand, it is inherently
fraught with perils: deadlocks, livelocks, starvation, prior-
ity inversion, non-composability, nondeterminism, and race
conditions. The last two can be very difficult to diagnose, to
reproduce, and to solve as they introduce non-deterministic
behavior. To show a lock-based algorithm’s correctness, for



example, one has to consider all the possible execution inter-
leavings of different threads, which increases exponentially
with the algorithm’s length.

Transactional memory is an alternative synchronisation mech-
anism that solves all these issues (with one exception, as
we will see). Advocates say it has clean, intuitive seman-
tics and strong correctness guarantees, freeing programmers
from worrying about low-level synchronization details. Skep-
tics highlight its disadvantages, most notably an historically
poor performance - although greatly improved by recent
hardware support (Intel TSX and IBM Power ISA v.2.0.7)
- and that it does not solve livelocks, as it is prone to almost-
livelocks in case of high contention.

STMX is a high-performance Common Lisp implementation
of transactional memory. It is one of the first implementa-
tions supporting hybrid transactions, taking advantage of
hardware transactions (Intel TSX) if available and using
software-only transactions as a fallback.

2. HISTORY
Transactional memory is not a new idea: proposed as early
as 1986 for Lisp [8], it borrows the concurrency approach
successfully employed by databases and tries to bring it to
general purpose programming. For almost ten years, it was
hypothesized as a hardware-assisted mechanism. Since at
that time no CPU supported the required instructions, it
was mainly confined as a research topic.

The idea of software-only transactional memory, introduced
by Nir Shavit and Dan Touitou in 1995 [11], fostered more
research and opened the possibility of an actual implemen-
tation. Many researchers explored the idea further, and the
first public implementation in Haskell dates back to 2005 [6].

Implementations in other languages followed soon: C/C++
(LibLTX, LibCMT, SwissTM, TinySTM), Java (JVSTM,
Deuce), C# (NSTM, MikroKosmos), OCaml (coThreads),
Python (Durus) and many others. Transactional memory is
even finding its way in C/C++ compilers as GNU gcc and
Intel icc.

Common Lisp had CL-STM, written in 2006 Google Sum-
mer of Code1. Unfortunately it immediately went unmain-
tained as its author moved to other topics. The same year
Dave Dice, Ori Shalev and Nir Shavit [4] solved a funda-
mental problem: guaranteeing memory read consistency.

Despite its many advantages, software transactional mem-
ory still had a major disadvantage: poor performance. In
2012, both Intel2 and IBM3 announced support for hard-
ware transactional memory in their upcoming lines of prod-
ucts. The IBM products are enterprise commercial servers
implementing “Power ISA v.2.0.7”: Blue Gene/Q4 and zEn-

1http://common-lisp.net/project/cl-stm/
2http://software.intel.com/en-
us/blogs/2012/02/07/transactional-synchronization-in-
haswell
3https://www.power.org/documentation/power-isa-
transactional-memory/
4http://www.kurzweilai.net/ibm-announces-20-petaflops-
supercomputer

terprise EC12, both dated 2012, and Power85 released in
May 2013. Intel products are the “Haswell” generation of
Core i5 and Core i7, released in June 2013 - the first con-
sumer CPUs offering hardware transactional memory under
the name “Intel TSX”.

Hardware support greatly improves transactional memory
performance, but it is never guaranteed to succeed and needs
a fallback path in case of failure.

Hybrid transactional memory is the most recent reinven-
tion. Hypothesized and researched several times in the past,
it was until now speculative due to lack of hardware sup-
port. In March 2013, Alexander Matveev and Nir Shavit [10]
showed how to actually implement a hybrid solution that
successfully combined the performance of Intel TSX hard-
ware transactions with the guarantees of a software transac-
tion fallback, removing the last technical barrier to adoption.

STMX started in March 2013 as a rewrite of CL-STM, and a
first software-only version was released in May 2013. It was
extended to support hardware transactions in July 2013,
then hybrid transactions in August 2013, making it one of
the first published implementations of hybrid transactional
memory.

3. MAIN FEATURES
STMX offers the following functionalities, common to most
software transactional memory implementations:

• atomic blocks: each (atomic ...) block runs code in
a memory transaction. It gets committed if returns
normally, while it gets rolled back if it signals an error
(and the error is propagated to the caller). For people
familiar with ContextL6, transactions could be defined
as layers, an atomic block could be a scoped layer ac-
tivation, and transactional memory is analogous to a
layered class: its behavior differs inside and outside
atomic blocks.

• atomicity: the effects of a transaction are either fully
visible or fully invisible to other threads. Partial effects
are never visible, and rollback removes any trace of the
executed operations.

• consistency: inside a transaction data being read is
guaranteed to be in consistent state, i.e. all the invari-
ants that an application guarantees at commit time
are preserved, and they can be temporarily invalidated
only by a thread’s own writes. Other simultaneous
transactions cannot alter them.

• isolation: inside a transaction, effects of transactions
committed by other threads are not visible. They be-
come visible only after the current transaction commits
or rolls back. In database terms this is the highest pos-
sible isolation level, named “serializable”.

• automatic re-execution upon conflict: if STMX de-
tects a conflict between two transactions, it aborts and
restarts at least one of them.

5https://www.power.org/documentation/power-isa-
version-2-07/
6http://common-lisp.net/project/closer/contextl.html



• read consistency: if STMX cannot guarantee that a
transaction sees a consistent view of the transactional
data, the whole atomic block is aborted and restarted
from scratch before it can see the inconsistency.

• composability: multiple atomic blocks can be com-
posed in a single, larger transaction simply by exe-
cuting them from inside another atomic block.

STMX also implements the following advanced features:

• waiting for changes: if the code inside an atomic block
wants to wait for changes on transactional data, it
just needs to invoke (retry). This will abort the
transaction, sleep until another thread changes some of
the transactional data read since the beginning of the
atomic block, and finally re-execute it from scratch.

• nested, alternative transactions: an atomic block can
execute two or more Lisp forms as alternatives in sepa-
rate, nested transactions with (atomic (orelse form1

form2 ...)). If the first one calls (retry) or aborts
due to a conflict or an inconsistent read, the second
one will be executed and so on, until one nested trans-
action either commits (returns normally) or rollbacks
(signals an error or condition).

• deferred execution: an atomic block can register arbi-
trary forms to be executed later, either immediately
before or immediately after it commits.

• hybrid transactional memory: when running on 64-bit
Steel Bank Common Lisp (SBCL) on a CPU with Intel
TSX instructions, STMX automatically takes advan-
tage of hardware memory transactions, while falling
back on software ones in case of excessive failures. The
implementation is carefully tuned and allows software
and hardware transactions to run simultaneously in
different threads with a constant (and very low) over-
head on both transaction types. STMX currently does
not support IBM Power ISA hardware transactions.

4. DESIGN AND IMPLEMENTATION
STMX brings efficient transactional memory to Common
Lisp thanks to several design choices and extensive opti-
mization. Design and implementation follows three research
papers [6] [4] [10]. All of them contain pseudo-code for the
proposed algorithms, and also include several correctness
demonstrations.

Keeping the dynamically-typed spirit of Lisp, STMX is value-
based: the smallest unit of transactional memory is a single
cell, named TVAR. It behaves similarly to a variable, as it
can hold a single value of any type supported by the hosting
Lisp: numbers, characters, symbols, arrays, lists, functions,
closures, structures, objects... A quick example:

(quicklisp:quickload :stmx)

(use-package :stmx)

(defvar *v* (tvar 42))

(print ($ *v*)) ;; prints 42

(atomic

(if (oddp ($ *v*))

(incf ($ *v*))

(decf ($ *v*)))) ;; *v* now contains 41

While TVARs can be used directly, it is usually more conve-
nient to take advantage of STMX integration with closer-

mop, a Metaobject Protocol library. This lets programmers
use CLOS objects normally, while internally wrapping each
slot value inside a TVAR to make it transactional. Thus it
can also be stated that STMX is slot-based, i.e. it imple-
ments transactional memory at the granularity of a single
slot inside a CLOS object. This approach introduces some
space overhead, as each TVAR contains several other infor-
mations in addition to the value. On the other hand, it has
the advantage that conflicts are detected at the granularity
of a single slot: two transactions accessing different slots of
the same object do not interfere with each other and can
proceed in parallel. A quick CLOS-based example:

(transactional

(defclass bank-account ()

((balance :type rational :initform 0

:accessor account-balance))))

(defun bank-transfer (from-acct to-acct amount)

(atomic

(when (< (account-balance from-acct) amount)

(error "not enough funds for transfer"))

(decf (account-balance from-acct) amount)

(incf (account-balance to-acct) amount)))

Object-based and stripe-based implementations exist too.
In the former, the smallest unit of transactional memory is
a single object. In the latter, the smallest unit is instead a
“stripe”: a (possibly non-contiguous) region of the memory
address space - suitable for languages as C and C++ where
pointers are first-class constructs. Both have lower overhead
than slot-based transactional memory, at the price of spuri-
ous conflicts if two transactions access different slots in the
same object or different addresses in the same stripe.

4.1 Read and write implementation
The fundamental operations on a TVAR are reading and writ-
ing its value. During a transaction, TVAR contents are never
modified: that’s performed at the end of the transaction by
the commit phase. This provides the base for the atomicity
and isolation guarantees. So writing into a TVAR must store
the value somewhere else. The classic solution is to have
a transaction write log: a thread-local hash table recording
all writes. The hash table keys are the TVARs, and the hash
table values are the values to write into them.

Reading a TVAR is slightly more complex. Dave Dice, Ori
Shalev and Nir Shavit showed in [4] how to guarantee that
a transaction always sees a consistent snapshot of the TVARs
contents. Their solution requires versioning each TVAR, and
also adding a “read version” to each transaction. Such ver-
sion numbers are produced from a global clock. One bit of
the TVAR version is reserved as a lock.

To actually read a TVAR, it is first searched in the transaction
write log and, if found, the corresponding value is returned.
This provides read-after-write consistency. Otherwise, the
TVAR contents is read without acquiring any lock - first re-
trieving its full version (including the lock bit), then issuing
a memory read barrier, retrieving its value, issuing another
memory read barrier, and finally retrieving again its full ver-
sion. The order is intentional, and the memory read barriers
are fundamental to ensure read consistency, as they couple



with the memory write barriers used by the commit phase
when actually writing TVAR contents. Then, the two TVAR

versions read, including the lock bits, are compared with
each other: if they differ, or if one or both lock bits are set,
the transaction aborts and restarts from scratch in order to
guarantee read consistency and isolation. Then, the TVAR

version just read is compared with the transaction read ver-
sion: if the former is larger, it means the TVAR was modified
after the transaction started. In such case, the transaction
aborts and restarts too. Finally, if the TVAR version is smaller
than or equal to the transaction read version, the TVAR and
the retrieved value are stored in the transaction read log: a
thread-local hash table recording all the reads, needed by
the commit phase.

4.2 Commit and abort implementation
Aborting a transaction is trivial: just discard some thread-
local data - the write log, the read log and the read version.

Committing a STMX transaction works as described in [4]:

First, it acquires locks for all TVARs in the write log. Us-
ing non-blocking locks is essential to avoid deadlocks, and if
some locks cannot be acquired, the whole transaction aborts
and restarts from scratch. STMX uses compare-and-swap
CPU instructions on the TVAR version to implement this op-
eration (the version includes the lock bit).

Second, it checks that all TVARs in the read log are not locked
by some other transaction trying to commit simultaneously,
and that their version is still less or equal to the transaction
read version. This guarantees the complete isolation be-
tween transactions - in database terms, transactions are “se-
rializable”. If this check fails, the whole transaction aborts
and restarts from scratch.

Now the commit is guaranteed to succeed. It increases the
global clock by one with an atomic-add CPU instruction,
and uses the new value as the transaction write version. It
then loops on all TVARs in the write log, setting their value to
match what is stored in the write log, then issuing a memory
write barrier, finally setting their version to the transaction
write version. This last write also sets the lock bit to zero,
and is used to release the previously-acquired lock.

Finally, the commit phase loops one last time on the TVARs
that have been just updated. The semaphore and condition
inside each TVAR will be used to notify any transaction that
invoked (retry) and is waiting for TVARs contents to change.

4.3 Novel optimizations
In addition to the algorithm described above, STMX uses
two novel optimizations to increase concurrency, and a third
to reduce the overhead:

If a transaction tries to write back in a TVAR the same value
read from it, the commit phase will recognize it before lock-
ing the TVAR by observing that the TVAR is associated to the
same value both in the write log and in the read log. In such
case, the TVAR write is degraded to a TVAR read and no lock
is acquired, improving concurrency.

When actually writing value and version to a locked TVAR,

the commit phase checks if it’s trying to write the same
value already present in the TVAR. In such case, the value
and version are not updated. Keeping the old TVAR version
means other transaction will not abort due to a too-large
version number, improving concurrency again.

To minimize the probability of near-livelock situations, where
one or more transactions repeatedly abort due to conflicts
with other ones, the commit phase should acquire TVAR locks
in a stable order, i.e. different transactions trying to lock the
same TVARs A and B should agree whether to first lock A
or B. The most general solution is to sort the TVARs before
locking them, for example ordering by their address or by
some serial number stored inside them. Unluckily, sorting
is relatively expensive - its complexity is O(N logN) - while
all other operations performed by STMX during commit are
at most linear, i.e. O(N) in the number of TVARs. To avoid
this overhead, STMX omits the sort and replaces it with
a faster alternative, at the price of increasing vulnerability
to near-livelocks (crude tests performed by the author seem
to show that near-livelocks remain a problem only under
extreme contention). The employed solution is to store a
serial number inside each TVAR and use it for the hashing
algorithm used by the read log and write log hash tables.
In this way, iterating on different write logs produces rel-
atively stable answers to the question “which TVAR should
be locked first, A or B ?” - especially if the hash tables
have the same capacity - maintaining a low probability for
near-livelock situations, without any overhead.

4.4 Automatic feature detection
ANSI Common Lisp does not offer direct access to low-
level CPU instructions used by STMX, as memory barriers,
compare-and-swap, and atomic-add. Among the free Lisp
compilers, only Steel Bank Common Lisp (SBCL) exposes
them to user programs. STMX detects the available CPU
instructions at compile time, while falling back on slower,
more standard features to replace any relevant CPU instruc-
tion not exposed by the host Lisp.

If memory barriers or compare-and-swap are not available,
STMX inserts a bordeaux-threads:lock in each TVAR and
uses it to lock the TVAR. The operation “check that all TVARs
in the read log are not locked by some other transaction” in
the commit phase requires getting the owner of a lock, or
at least retrieving whether a lock is locked or not and, in
case, whether the owner is the current thread. Bordeaux-

threads does not expose such operation, but the underly-
ing implementation often does: Clozure Common Lisp has
(ccl::%%lock-owner), CMUCL has (mp::lock-process)

and Armed Bear Common Lisp allows to directly call the
Java methods ReentrantLock.isLocked() and Reentrant-

Lock.isHeldByCurrentThread() to obtain the same infor-
mation. STMX detects and uses the appropriate mechanism
automatically.

Similarly, the global counter uses atomic-add CPU instruc-
tions if available, otherwise it falls back on a normal add
protected by a bordeaux-threads:lock.

4.5 Hybrid transactions



In June and July 2013 we extended STMX to support the
Intel TSX CPU instructions7, that provide hardware mem-
ory transactions.

Intel TSX actually comprise two sets of CPU instructions:
HLE and RTM. Hardware Lock Elision (HLE) is designed
as a compatible extension for existing code that already
uses atomic compare-and-swap as locking primitive. Re-
stricted Transactional Memory (RTM) is a new set of CPU
instructions that implement hardware memory transactions
directly at the CPU level:

• XBEGIN starts a hardware memory transaction. After
this instruction and until the transaction either com-
mits or aborts, all memory accesses are guaranteed
to be transactional. The programmer must supply to
XBEGIN the address of a fallback routine, that will be
executed if the transaction aborts for any reason.

• XEND commits a transaction.

• XABORT immediately aborts a transaction and jumps
to the fallback routine passed to XBEGIN. Note that
hardware transactions can also abort spontaneosly for
many different reasons: they are executed with a “best
effort” policy, and while following Intel guidelines and
recommendations usually results in very high success
rates (> 99.99%), they are never guaranteed to suc-
ceed and they have limits on the amount of memory
that can be read and written within a transaction.
Also, many operations usually cause them to abort
immediately, including: conflicting memory accesses
from other CPU cores, system calls, context switches,
CPUID and HLT CPU instructions, etc.

• XTEST checks whether a transaction is in progress.

Exposing the XBEGIN, XEND, XABORT, and XTEST CPU instruc-
tions as Lisp functions and macros is non-portable but usu-
ally fairly straightforward, and we added them on 64-bit
SBCL.

The real difficulty is making them compatible with software
transactions: the software-based commit uses locks to pre-
vent other threads from accessing the TVARs it wants to mod-
ify, so if a hardware transaction reads those TVARs at the
wrong time, it would see a half-performed commit: isolation
and consistency would be violated. A naive solution is to
instrument hardware transactions to check whether TVARs
are locked or not when reading or writing them. It imposes
such a large overhead that cancels the performance advan-
tage. Another attempt is to use hardware transactions only
to implement the commit phase of software transactions.
Tests on STMX show that the performance gain is limited -
about 5%.

The key was discovered by Alexander Matveev and Nir Shavit
[10] in 2013: use a hardware transaction to implement the
commit phase of software transactions, not to improve per-
formance, but to make them really atomic at the CPU level.
Then the software commit phase does not need anymore to
lock the TVARs: atomicity is now guaranteed by the hardware
transaction. With such guarantees, hardware transactions

7http://www.intel.com/software/tsx

can directly read and write TVARs without any instrumenta-
tion - no risk of seeing a partial commit - and their overhead
is now almost zero. The only remaining overhead is the need
to write both TVARs value and version, not just the value.

There were two problems left.

The first is: as stated above, hardware transaction are never
guaranteed to succeed. They may abort if hardware limits
are exceeded or if the thread attempts to execute a CPU
instruction not supported inside a hardware transaction. For
example, memory allocation in SBCL almost always causes
hardware transactions to abort - this is an area that could
be significantly improved by creating thread-local memory
pools in the host Lisp.

Alexander Matveev and Nir Shavit [10] provided a sophisti-
cated solution to this problem, with multiple levels of fall-
backs: software transactions using a smaller hardware trans-
action during commit, software-only transactions, and intru-
mented hardware transactions.

We added hybrid transactions to STMX using a simpli-
fied mechanism: if the commit phase of software transac-
tions fails (remember, it is now implemented by a hardware
transaction), it increments a global counter that prevents
all hardware transactions from running, then performs an
old-style software-only commit, finally decrements the global
counter to re-enable hardware transactions.

The second problem is: the commit phase of a transaction -
either hardware or software - must atomically increment the
global clock. For hardware transactions, this means mod-
ifying a highly contended location, causing a conflict (and
an abort) as soon as two or more threads modify it from
overlapping transactions.

A partial solution is described in [4, 10]: use a different
global clock algorithm, named GV5, that increases the global
clock only after an abort. It works by writing the global
clock +1 into TVARs during commit without increasing it,
and has the side effect of causing approximately 50% of soft-
ware transactions to abort.

The full solution, as described in [10, 2] is to use an adaptive
global clock, named GV6, that can switch between the nor-
mal and the GV5 algorithm depending on the success and
abort rates of software and hardware transactions. STMX
stores these rates in thread-local variables and combines
them only sporadically (every some hundred transactions)
to avoid creating other highly contended global data.

We released STMX version 1.9.0 in August 2013 - the first
implementation to support hybrid transactional memory in
Common Lisp, and one of the first implementations to do so
in any language.

4.6 Data structures
STMX includes transactional versions of basic data struc-
tures: TCONS and TLIST for cons cells and lists, TVECTOR for
vectors, THASH-TABLE for hash tables, and TMAP for sorted
maps (it is backed by a red-black tree).



THASH-TABLE and TMAP also have non-transactional coun-
terparts: GHASH-TABLE and GMAP. They are provided both
for completeness and as base classes for the corresponding
transactional version. This makes them practical examples
showing how to convert a normal data structure into a trans-
actional one.

In many cases the conversion is trivial: change (defclass

foo ...) definition to (transactional (defclass foo ...))8.
When needed, it is also possible to decide on a slot-by-slot
basis whether they should become transactional or not. This
can significantly reduce the overhead in certain cases, as
shown in [3]. For slots that contain non-immutable values
(i.e. objects, arrays, etc.), such inner objects must also be
replaced by their transactional counterparts if their contents
can be modified concurrently. STMX also includes some
transactional-only data structures: a first-in last-out buffer
TSTACK, a first-in first-out buffer TFIFO, a reliable multicast
channel TCHANNEL, and its reader side TPORT.

5. BENEFITS
The conceptual simplicity, intuitivity and correctness guar-
antees of transactional memory are not its only advantages.

A more subtle, important advantage is the fact that convert-
ing a data structure into its transactional version is almost
completely mechanical: with STMX, it is sufficient to re-
place a CLOS (defclass foo ...) with (transactional

(defclass foo ...)), with object-valued slots needing the
same replacement.

This means that arbitrarily complex algorithms and data
structures can be easily converted, without the need to ana-
lyze them in deep detail, as it’s usually the case for the con-
version to fine-grained lock-based concurrency. Such ability
makes transactional memory best suited for exactly those
algorithms and data structures that are difficult to paral-
lelize with other paradigms: large, complex, heterogeneous
data structures that can be modified concurrently by com-
plex algorithms and do not offer easy divisions in subsets.

Clearly, analyzing the algorithms and data structures can
provide benefits, in the form of insights about the subset
of the data that really needs to become transactional, and
which parts of the algorithms should be executed inside
transactions.

A practical example is Lee’s circuit routing algorithm, also
used as transactional memory benchmark [1]: the algorithm
takes as input a large, discrete grid and pairs of points
to connect (e.g. an integrated circuit) and produces non-
intersecting routes between them. Designing a lock-based
concurrent version of Lee’s algorithm requires decisions and
trade-offs, as one has to choose at least the locking ap-
proach and the locks granularity. The transactional version
is straightforward: the circuit grid becomes transactional.
A deeper analysis also reveals that only a small part of the
algorithm, namely backtracking, needs to be executed inside
a transaction.

8an analogous macro for structure-objects defined with
(defstruct foo ...) is currently under development.

6. DISADVANTAGES
Transactional memory in general has some drawbacks, and
STMX inherits them.

One is easy to guess: since transactions can abort and restart
at any time, they can be executed more times than expected,
or they can be executed when not expected, so perform-
ing any irreversible operation inside a transaction is prob-
lematic. A typical example is input/output: a transaction
should not perform it, rather it should queue the I/O opera-
tions in a transactional buffer and execute them later, from
outside any transaction. Hardware transactions - at least
Intel TSX - do not support any irreversible operation and
will abort immediately if you try to perform input/output
from them.

Another drawback is support for legacy code: to take advan-
tage of transactions, code must use transactional cells, i.e.
TVARs. This requires modifications to the source code, which
can be performed automatically only by transaction-aware
compilers or by instrumentation libraries as Java Deuce [9].
STMX is implemented as a normal library, not as a compiler
plugin, so it requires programmers to adapt their code. The
modifications are quite simple and mechanic, and STMX
includes transactional versions of some popular data struc-
tures, both as ready-to-use solutions and as examples and
tutorials showing how to modify a data structure to make it
transactional.

The last disadvantage is proneness to almost-livelocks under
high contention. This is common to all implementations that
use non-blocking mutexes (STMX uses compare-and-swap
ones) as synchronization primitives, as they either succeed
or fail immediately, and they are not able nor supposed to
sleep until the mutex can be acquired: doing so would cause
deadlocks.

7. TRANSACTIONAL I/O
We present a novel result, showing that in a very specific case
it is possible to perform I/O from a hardware transaction
implemented by Intel TSX, working around the current Intel
hardware limitations. The result is transactional output,
i.e. the output is performed if and only if the hardware
transaction commits.

Intel reference documentation9 states that attempting to
execute I/O from an Intel TSX transactions may cause
it to abort immediately, and that the exact behavior is
implementation-dependent. On the hardware tested by the
author (Intel Core i7 4770) this is indeed the case: syscalls,
context switches, I/O to hardware ports, and the other oper-
ations that “may abort transactions”, actually abort them.
The technique described below works around this limitation.

Hardware transactions are guaranteed to support only ma-
nipulation of CPU registers and memory. Anyway, the con-
tent and meaning of the memory is irrelevant for Intel TSX.
It is thus possible to write to memory-mapped files or shared
memory, as long as doing so does not immediately trigger a
context switch or a page fault.

9http://download-software.intel.com/sites/default/files/319433-
014.pdf - section 8.3.8.1, pages 391-392



Thus, if some pages of memory mapped file are already dirty
- for example because we write into them from outside any
transaction - it is possible to continue writing into them
from hardware transactions. After some time, the kernel will
spontaneously perform a context switch and write back the
pages to disk. Since hardware transactions are atomic at the
CPU level and they currently abort upon a context switch,
the kernel will observe that some of them have committed
and altered the pages, while some others have aborted and
their effects are completely rolled back. The memory pages,
altered only by the committed transactions, will be written
to disk by the kernel, thus implementing transactional I/O.

Author’s initial tests show that it is possible to reach very
high percentages of successful hardware transactions - more
than 99% - writing to memory mapped files, provided the
transactions are short and there is code to dirty again the
pages if the hardware transactions fail.

This is a workaround - maybe even a hack - yet it is ex-
tremely useful to implement database-like workloads, where
transactions must also be persistent, and shared memory
inter-process communication. The author is currently using
this technique to implement Hyperluminal-DB10, a transac-
tional and persistent object store, on top of STMX.

8. PERFORMANCE
This paragraph contains benchmark results obtained on an
Intel Core i7 4770, running 64-bit versions of Linux/Debian
jessie, SBCL 1.1.15 and the latest STMX. Disclaimer: re-
sults on different systems will vary. Speed differences up
to 100 times and more have been observed, depending
on the Lisp compiler and the support for features used by
STMX. System setup: execute the forms

(declaim (optimize (compilation-speed 0) (space 0)

(debug 0) (safety 0) (speed 3)))

(ql:quickload "stmx")

(ql:quickload "stmx.test")

(fiveam:run! ’stmx.test:suite)

before loading any other Lisp library, to set optimization
strategy, load STMX and its dependencies, and run the test
suite once to warm up the system.

8.1 Micro-benchmarks
We then created some transactional objects: a TVAR v, a
TMAP tm, a THASH-TABLE th and fill them - full details are
described in STMX source code11. Note that TMAP and
THASH-TABLE are CLOS objects, making the implementa-
tion short and (usually) clear but not heavily optimized for
speed. Rewriting them as structure-objects would definitely
improve their performance. Finally, $ is the function to read
and write TVAR contents.

To record the execution time, we repeated each benchmark
one million times in a loop and divided the resulting time
by the number of iterations.

In Table 1, we report three times for each micro-benchmark:
the first for software-only transactions, the second for hybrid

10https://github.com/cosmos72/hyperluminal-db
11http://github.com/cosmos72/stmx

transactions, the third for non-transactional execution with
non-transactional data structures.

Table 1: micro-benchmarks time, in nanoseconds
Name Code SW tx hybrid no tx
read ($ v) 87 22 < 1
write (setf ($ v) 1) 113 27 < 1
incf (incf ($ v)) 148 27 3
10
incf

(dotimes (j 10)

(incf (the fixnum

($ v))))

272 59 19

100
incf

(dotimes (j 100)

(incf (the fixnum

($ v))))

1399 409 193

1000
incf

(dotimes (j 1000)

(incf (the fixnum

($ v))))

12676 3852 1939

map
read

(get-gmap tm 1) 274 175 51

map
incf

(incf

(get-gmap tm 1))

556 419 117

hash
read

(get-ghash th 1) 303 215 74

hash
incf

(incf

(get-ghash th 1))

674 525 168

Some remarks and deductions on the micro-benchmarks re-
sults: STMX software-only transactions have an initial over-
head of ∼ 130 nanoseconds, and hybrid transactions reduce
the overhead to ∼ 25 nanoseconds.

In software-only transactions, reading and writing TVARs, i.e.
transactional memory, is 6–7 times slower than reading and
writing normal memory. Hardware transactions improve the
situation: inside them, transactional memory is twice as slow
as normal memory. In this respect, it is worth noting that
STMX can be further optimized, since in pure hardware
transactions (which do not use TVARs nor the function $)
reading and writing memory has practically the same speed
as normal memory access outside transactions.

The results on CLOS sorted maps and hash tables show
that they are relatively slow, and the transactional version
even more so. To have a more detailed picture, non-CLOS
implementations of sorted maps and hash tables would be
needed for comparison.

8.2 Lee-TM
Finding or designing a good synthetic benchmark for trans-
actional memory is not easy. Lee’s circuit routing algo-
rithm, in the proposers’ opinion [1], is a more realistic bench-
mark than classic ones (red-black trees and other micro-
benchmarks, STMBench7 . . . ). It takes as input a large,
discrete grid and pairs of points to connect (e.g. an inte-
grated circuit) and produces non-intersecting routes between
them. Proposed and used as benchmark for many trans-
actional memory implementations (TL2, TinySTM, RSTM,
SwissTM . . . ), it features longer transactions and non-trivial
data contention.

After porting Lee-TM to STMX12, we realized that it spends
about 99.5% of the CPU time outside transactions due

12https://github.com/cosmos72/lee-stmx



to the (intentionally naive) grid exploration algorithm, and
0.5% in the backtracking algorithm (executed inside a trans-
action). It is thus not really representative of the strength
and weaknesses of transactional memory. Lacking a better
alternative we present it nevertheless, after some optimiza-
tions (we replaced Lee’s algorithm with faster Hadlock’s one)
that reduce the CPU time spent outside transactions to 92–
94%. The effect is that Lee-TM accurately shows the over-
head of reading transactional memory from outside trans-
actions, but is not very sensitive to transactional behavior.

In Table 2, we compare the transactional implementation of
Lee-TM with a single-thread version and with a simple lock-
based version that uses one global write lock. The results
show that transactional memory slows down Lee’s algorithm
(actually, Hadlock’s algorithm) by approximately 20% with-
out altering its scalability.

The global write lock is a particularly good choice for this
benchmark due to the very low time spent holding it (6–
8%), and because the algorithm can tolerate lock-free reads
from the shared grid. Yet, the overhead of the much more
general transactional memory approach is contained. More
balanced or more complex algorithms would highlight the
poor scalability of trying to parallelize using a simple global
write lock.

Table 2: Lee-TM, mainboard circuit
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9. CONCLUSIONS
Transactional memory has a long history. Mostly confined
to a research topic for the first two decades, it is now finding
its way into high-quality implementations at an accelerating
pace. The long-sought arrival of hardware support may well
be the last piece needed for wide diffusion as a concurrent
programming paradigm.

STMX brings state of the art, high-performance transac-
tional memory to Common Lisp. It is one of the first pub-
licly available implementations to support hybrid transac-
tions, integrating “Intel TSX” CPU instructions and soft-
ware transactions with minimal overhead on both.

STMX is freely available: licensed under the “Lisp Lesser
General Public Licence” (LLGPL), it can be installed with

Quicklisp (ql:quickload "stmx") or downloaded from
http://stmx.org/
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