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Abstract

In this paper we present the tree to tree
transduction language, TTT. We moti-
vate the overall ”template-to-template” ap-
proach to the design of the language, and
outline its constructs, also providing some
examples. We then show that TTT al-
lows transparent formalization of rules for
parse tree refinement and correction, log-
ical form refinement and predicate disam-
biguation, inference, and verbalization of
logical forms.

1 Introduction

Pattern matching and pattern-driven transforma-
tions of list-structured symbolic expressions or
trees are fundamental tools in AI. They facilitate
many symbol manipulation tasks, including oper-
ations on parse trees and logical forms, and even
inference and aspects of dialogue and translation.

The TTT system allows concise and transpar-
ent specification of rules for such tasks, in par-
ticular (as we will show), parse tree refinement
and correction, predicate disambiguation, logical
form refinement, inference, and verbalization into
English.

In parse tree refinement, our particular focus
has been on repair of malformed parses of image
captions, as obtained by the Charniak-Johnson
parser (Charniak and Johnson, 2005). This has
encompassed such tasks as distinguishing pas-
sive participles from past participles and temporal
nominals from non-temporal ones, among other
tasks which will be discussed later. For exam-
ple, standard treebank parses tag both past par-
ticiples (as in “has written”) and passive partici-
ples (as in “was written”) as VBN. This is undesir-

able for subsequent compositional interpretation,
as the meanings of past and passive participles are
distinct. We can easily relabel the past partici-
ples as VBEN by looking for parse tree subex-
pressions where a VBN is preceded by a form of
“have”, either immediately or with an interven-
ing adverb or adverbial, and replacing VBN by
VBEN in such subexpressions. Of course this can
be accomplished in a standard symbol manipula-
tion language like Lisp, but the requisite multi-
ple lines of code obscure the simple nature of the
task. We have also been able to repair system-
atic PP (prepositional phrase) misattachments, at
least in the limited domain of image captions. For
example, a common error is attachment of a PP
to the last conjunct of a conjunction, where in-
stead the entire conjunction should be modified by
the PP. Thus when a statistically obtained parse of
the sentence “ Tanya and Grandma Lillian at her
highschool graduation party” brackets as “Tanya
and (Grandma Lillian (at her highschool gradu-
ation party.))”, we want to lift the PP so that “at
her highschool graduation party” modifies “Tanya
and Grandma Lillian”.

Another systematic error is faulty classification
of relative pronouns/determiners as wh-question
pronouns/determiners, e.g., “the student whose
mother contacted you” vs. “I know whose mother
contacted you” – an important distinction in com-
positional semantics. (Note that only the first oc-
currence, i.e., the relative determiner, can be para-
phrased as with the property that his, and only the
second occurrence, in which whose forms a wh-
nominal, can be paraphrased as the person with
the property that his.) An important point here is
that detecting the relative-determiner status of a
wh-word like whose may require taking account



of an arbitrarily deep context. For example, in
the phrase “the student in front of whose par-
ents you are standing”, whose lies two levels of
phrasal structure below the nominal it is seman-
tically bound to. Such phenomena motivate the
devices in TTT for detecting “vertical patterns”
of arbitrary depth. Furthermore, we need to be
able to make local changes “on the fly” in match-
ing vertical patterns, because the full set of tree
fragments flanking a vertical match cannot in gen-
eral be saved using match variables. In the case
of a wh-word that is to be re-tagged as a relative
word, we need to rewrite it at the point where
the vertical pattern matches it, rather than in a
separate tree-(re)construction phase following the
tree-matching phase.

An example of a discourse phenomenon that
requires vertical matching is anaphoric referent
determination. In particular, consider the well-
known rule that a viable referent for an anaphoric
pronoun is an NP that C-commands it, i.e., that is
a (usually left) sibling of an ancestor of the pro-
noun. For example, in the sentence “John shows
Lillian the snowman that he built”, the NP for
John C-commands the pronominal NP for he, and
thus is a viable referent for it (modulo gender and
number agreement). We will later show a sim-
ple TTT rule that tags such an anaphoric pronoun
with the indices of its C-commanding NP nodes,
thus setting the stage for semantic interpretation.

We have also been able to perform Skolemiza-
tion, conjunct separation, simple inference, and
logical form verbalization with TTT and suspect
its utility to logic tasks will increase as develop-
ment continues.

The rest of the paper is organized as follows:
we discuss related work in section 2, discuss the
TTT language (including pattern matching and
transduction syntax, and some theoretical proper-
ties) in section 3, and go though several detailed
example applications in section 4.

A beta version of the system can be found at
http://www.cs.rochester.edu/research/ttt/.

2 Related Work

There are several pattern matching and transduc-
tion facilities available; however, none proved
sufficiently general and perspicuous to serve our
various purposes. The Tiburon tool is a com-
prehensive system for manipulating regular tree
grammars, tree automata, and tree transducers,

including weighted variants (May and Knight,
2008). It supports many useful algorithms, such
as intersection, determinization, recognition, top-
k generation, and maximum likelihood training.
However, variables that appear in both a rule’s lhs
and rhs must occur at a depth less than two on the
left, and Tiburon cannot easily simulate our verti-
cal path or sequence operators.

Timbuk is a system for deciding reachability
with term rewriting systems and tree automata
(Genet, 2003), and it also performs intersec-
tion, union, and determinization of tree automata.
Though variables can appear at arbitrary locations
in terms, they always match exactly one term from
a fixed set, and therefore do not match sequences
or vertical paths.

The three related tools Tgrep, Tregex, and
Tsurgeon provide powerful tree matching and re-
structuring capabilities (Levy and Andrew, 2006).
However, Tgrep and Tregex provide no transduc-
tion mechanism, and Tsurgeon’s modifications
are limited to local transformations on trees. Also,
it presupposes list structures that begin with an
atom (as in Treebank trees, but not in parse trees
with explicit phrasal features), and its patterns are
fundamentally tree traversal patterns rather than
tree templates, and can be quite hard to read.

Xpath and XSLT are languages for manipula-
tion of XML trees (World Wide Web Consortium,
1999; World Wide Web Consortium, 1999). As its
name indicates, Xpath expressions describe paths
in trees to the relevant nodes, rather than patterns
representing the trees to be matched, as in the
TTT approach. It is useful for extracting struc-
tured but unordered information from trees, and
supports numerous functions and predicates over
matched nodes, but does not match ordered se-
quences. XSLT is also more procedurally oriented
than TTT, and is useful for constructing XML rep-
resentations of transformations of data extracted
by Xpath. The primary advantages of TTT over
Xpath and XSLT are a more concise syntax, or-
dered sequence matching, compositional patterns
and templates, and in-place modification of trees.

Peter Norvig’s pattern matching language,
“pat-match”, from (Norvig, 1991) provides a nice
pattern matching facility within the Lisp environ-
ment, allowing for explicit templates with vari-
ables (that can bind subexpressions or sequences
of them), and including ways to apply arbitrary
tests to expressions and to match boolean combi-



nations of patterns. However, there is no provi-
sion for “vertical” pattern matching or subexpres-
sion replacement “on the fly”, which are features
of TTT we have found useful. Also the notation
for alternatives, along with exclusions, is more
concise than in Norvig’s matcher, for instance not
requiring explicit ORs. Like TTT, pat-match sup-
ports matching multi-level structures, but unlike
TTT, the pattern operators are not composable.

Mathematica also allows for sophisticated pat-
tern matching, including matching of sequences
and trees. It also includes a term rewriting sys-
tem that is also capable of rewriting ordered se-
quences. It provides functions to apply patterns to
arbitrary subtrees of a tree until all matches have
been found or some threshold count is reached,
and it can return all possible ways of applying a
set of rules to an expression. However, as in the
case of Norvig’s matcher there is no provision for
vertical patterns or on-the-fly transduction (Wol-
fram Research, Inc, 2010).

3 TTT

Pattern Matching

Patterns in TTT are hierarchically composed of
sub-patterns. The simplest kind of pattern is an
arbitrary, explicit list structure (tree) containing
no match operators, and this will match only an
identical list structure. Slightly more flexible pat-
terns are enabled by the “underscore operators”
!, +, ?, *. These match any single tree, any

non-empty sequence of trees, the empty sequence
or a sequence of one tree, and any (empty or non-
empty) sequence of trees respectively. These op-
erators (as well as all others) can also be thought
of as match variables, as they pick up the tree or
sequence of trees they match as their binding.

The bindings are “non-sticky”, i.e., an operator
such as ! will match any tree, causing replace-
ment of any prior binding (within the same pat-
tern) by that tree. However, bindings can be pre-
served in two ways: by use of new variable names,
or by use of sticky variables. New variable names
are obtained by appending additional characters
– conventionally, digits – to the basic ones, e.g.,
!1, !2, etc. Sticky variables are written with a

dot, i.e., !., +., ?., *., where again these
symbols may be followed by additional digits or
other characters. The important point concern-
ing sticky variables is that multiple occurrences of

such a variable in a pattern can only be bound by
the same unique value. Transductions are spec-
ified by a special pattern operator / and will be
described in the next section.

More flexible operators, allowing for alter-
natives, negation, and vertical patterns among
other constructs, are written as a list headed by
an operator without an underscore, followed by
one or more arguments. For example, (! A
(B C)) will match either the symbol A or the
list (B C), i.e., the two arguments provide al-
ternatives. As an example involving negation,
(+ A (B !) ∼ (B B)) will match any
nonempty sequence whose elements are As or
two-element lists headed by B, but disallowing el-
ements of type (B B). Successful matches cause
the matched expression or sequence of expres-
sions to become the value of the operator. Again,
sticky versions of match operators use a dot, and
the operators may be extended by appending dig-
its or other characters.

The ten basic argument-taking pattern opera-
tors are:

! Match exactly one sub-pattern argument.

+ Match a sequence of one or more arguments.

? Match the empty sequence or one argument.

* Match the empty sequence or one or more
arguments.

{} Match any permutation of the arguments.

<> Match the sequence of arguments directly
(without the parenthesis enclosing the <>
operator)

ˆ Match a tree that has a child matching one of
the arguments.

ˆ* Match a tree that has a descendant matching
one of the arguments.

ˆ@ Match a vertical path.

/ Attempt a transduction. (Explained later.)

Various examples will be provided below. Any of
the arguments to a pattern operator may be com-
posed of arbitrary patterns.

Negation: The operators !, +, ?, *, and ˆ sup-
port negation (pattern exclusion); i.e., the argu-
ments of these operators may include not only al-
ternatives, but also a negation sign ∼ (after the



alternatives) that is immediately followed by one
or more precluded patterns. If no alternatives
are provided, only precluded patterns, this is in-
terpreted as “anything goes”, except for the pre-
cluded patterns. For example, (+ ∼ (A A) B)
will match any nonempty sequence of expressions
that contains no elements of type (A A) or B.
Note that the negation operator does not appear
by itself; one must instead specify it in conjunc-
tion with one of the other operators. The pattern
(! ∼ P) matches any single tree which does not
match pattern P.

Conjunction: We have so far found no com-
pelling need for an explicit conjunction operator.
If necessary, a way to say that a tree must match
each of two or more patterns is to use double
negation. For example, suppose we want to say
that an expression must begin with an A or B but
must contain an A (at the top level); this could be
expressed as
(! ∼ (! ∼ ((! A B) *) ( * A *))).
However, this would be more perspicuously ex-
pressed in terms of alternatives, i.e.,
(! (A *) (B * A *)).
We also note that the allowance for computable
predicates (discussed below) enables introduction
of a simple construct like
(! (and? P1 P2)) , where P1 and P2 are ar-
bitrary TTT patterns, and and? is an executable
predicate that applies the TTT matcher to its argu-
ments and returns a non-nil value if both succeed
and nil otherwise. In the former case, the binding
of the outer ! will become the matched tree.

Bounded Iteration: The operators !, +, ?,
*, and ˆ also support bounded iteration, using
square brackets. This enables one to write pat-
terns that match exactly n, at least n, at most n,
or from n to m times, where n and m are integers.
Eg. (![3] A) would match the sequence A A
A. The vertical operator ˆ[n] matches trees with
a depth-n descendant that matches one of the op-
erator’s arguments.

Vertical Paths: The operators ˆ* and ˆ@ en-
able matching of vertical paths of arbitrary depth.
The first, as indicated, requires the existence of
a descendant of the specified type, while the sec-
ond, with arguments such as (ˆ@ P1 P2 ...
Pn) matches a tree whose root matches P1, and
has a child matching P2, which in turn has a child
matching P3, and so on. Note that this basic form
is indifferent to the point of attachment of each

successive offspring to its parent; but we can also
specify a point of attachment in any of the P1, P2,
etc., by writing @ for one of its children. Because
this operator (@) does not appear outside the ver-
tical path context, it was not listed with the other
operators above. Note as well that the argument
sequence P1 P2 ... can itself be specified as a
pattern (e.g., via (+ ...)), and in this case there
is no advance commitment to the depth of the tree
being matched.

Computable Predicates: Arbitrary predicates
can be used during the pattern matching pro-
cess (and consequently the transduction process).
Symbols with names ending in a question mark,
and with associated function definitions, are in-
terpreted as predicates. When a predicate is en-
countered during pattern matching, it is called
with the current subtree as input. The result is
nil or non-nil, and when nil is returned the current
match fails, otherwise it succeeds (but the non-
nil value is not used further). Additionally, sup-
porting user-defined predicates enables the use of
named patterns.

Some Example Patterns: Here are examples
of particular patterns, with verbal explanations.
Also see Table 1, at the top of the next page, for
additional patterns with example bindings.

• (! (+ A) (+ B))
Matches a non-empty sequence of A’s or a
non-empty sequence of B’s, but not a se-
quence containing both.

• (* (<> A A))
Matches an even number of A’s.

• (B (* (<> B B)))
Matches an odd number of B’s.

• (({} A B C))
Matches (A B C), (A C B), (B A C),
(B C A), (C A B) and (C B A) and
nothing else.

• ((<> A B C))
Matches (A B C) and nothing else.

• (ˆ* X)
Matches any tree that has descendant X.

• (ˆ@ (+ (@ *)) X)
Matches any tree with leftmost leaf X.



Pattern Tree Bindings
! (A B C) ( ! (A B C)
( * F) (A B (C D E) F) ( * A B (C D E))
(A B ? F) (A B (C D E) F) ( ? (C D E))
(A B ? (C D E) F) (A B (C D E) F) ( ?)
(ˆ@ ! (C *) E) (A B (C D E) F) (ˆ@ (A B (C D E) F)) ( * D E)
(A B (<> (C D E)) F) (A B (C D E) F) (<> (C D E))
(A B (<> C D E) F) (A B (C D E) F) nil

Table 1: Binding Examples

Transductions

Transductions are specified with the transduction
operator, /, which takes two arguments. The left
argument may be any tree pattern and the right
argument may be constructed of literals, variables
from the lhs pattern, and function calls.

Transductions may be applied to the roots of
trees or arbitrary subtrees, and they may be re-
stricted to apply at most once, or until conver-
gence. When applying transductions to arbitrary
subtrees, trees are searched top-down, left to right.
When a match to the transduction lhs pattern oc-
curs, the resulting bindings and transduction rhs
are used to create a new tree, which then replaces
the tree (or subtree) that matched the lhs.

Here are a few examples of simple template to
template transductions:

• (/ X Y)
Replaces the symbol X with the symbol Y.

• (/ (! X Y Z) (A))
Replaces any X, Y, or Z with A.

• (/ (! X) (! !))
Duplicates an X.

• (/ (X * Y) (X Y))
Remove all subtrees between X and Y.

• (/ ( ! * !1) ( !1 * !))
Swaps the subtrees on the boundaries.

A transduction operator may appear nested within
a composite pattern. The enclosing pattern ef-
fectively restricts the context in which the trans-
duction will be applied, because only a match to
the entire pattern will trigger a transduction. In
this case, the transduction is applied at the lo-
cation in the tree where it matches. The rhs of
such a transduction is allowed to reference the

bindings of variables that appear in the enclos-
ing pattern. We call these local transductions, as
distinct from replacement of entire trees. Local
transductions are especially advantageous when
performing vertical path operations, allowing for
very concise specifications of local changes. For
example, the transduction

(ˆ@ (* ((! S SBAR) +))

(/ (WH !)

(REL-WH (WH !))))

wraps (REL-WH ...) around a (WH ...)
constituent occurring as a descendant of a ver-
tical succession of clausal (S or SBAR) con-
stituents. Applied to the tree (S (SBAR (WH
X) B) A), this yields the new tree (S (SBAR
(REL-WH (WH X)) B) A). Additional ex-
amples appear later (especially in the parse tree
refinement section).

TTT also supports constructive functions, with
bound variables as arguments, in the rhs tem-
plates, such as join-with-dash!, which con-
catenates all the bound symbols with interven-
ing dashes, and subst-new!, which will be
discussed later. One can imagine additional
functions, such as reverse!, l-shift!,
r-shift!, or any other function of a list of
terms that may be useful to the application at
hand. Symbols with names ending in the excla-
mation mark are assumed to be associated with
function definitions, and when appearing as the
first element of a list are executed during out-
put template construction. To avoid writing many
near-redundant functions, we use the simple func-
tion apply! to apply arbitrary Lisp functions
during template construction.

Theoretical Properties

A thorough treatment of the formal properties
of tree transducers is (Comon, 2007). A good



overview of the dimensions of variability among
formal tree transducers is given in (Knight, 2007).
The main properties are restrictions on the height
of the tree fragments allowed in rules, linearity,
and whether the rules can delete arbitrary sub-
trees. Among the more popular and recent ones,
synchronous tree substitution grammars (STSG),
synchronous tree sequence substitution grammars
(STSSG), and multi bottom-up tree transduc-
ers (MBOT) constrain their rules to be linear
and non-deleting, which is important for efficient
rule learning and transduction execution (Chiang,
2004; Galley et. al, 2004; Yamada and Knight,
2001; Zhang et. al, 2008; Maletti, 2010).

The language TTT does not have any such
restrictions, as it is intended as a general pro-
gramming aid, with a concise syntax for po-
tentially radical transformations, rather than a
model of particular classes of linguistic opera-
tions. Thus, for example, the 5-element pat-
tern (! ((* A) B) ((* A) C) ((* A) D)

((* A) E) ((* A))) applied to the expres-
sion (A A A A A) rescans the latter 5 times, im-
plying quadratic complexity. (Our current imple-
mentation does not attempt regular expression re-
duction for efficient recognition.) With the addi-
tion of the permutation operator {}, we can force
all permutations of certain patterns to be tried in
an unsuccessful match (e.g., (({} (! A B C)
(! A B C) (! A B C))) applied to (C B
E)), leading to exponential complexity. (Again,
our current implementation does not attempt to
optimize.) Also, allowance for repeated applica-
tion of a set of rules to a tree, until no further
applications are possible, leads to Turing equiv-
alence. This of course is true even if only the 4
underscore-operators are allowed: We can simu-
late the successive transformations of the config-
urations of a Turing machine with string rewriting
rules, which are easily expressed in terms of those
operators and /. Additionally, pattern predicates
and function application in the right-hand sides of
rules are features present in TTT that are not in-
cluded in the above formal models. In themselves
(even without iterative rule application), these un-
restricted predicates and functions lead to Turing
equivalence.

The set of pattern matching operators was cho-
sen so that a number of disparate pattern match-
ing programs could all be replaced with concise
TTT rules. It does subsume regular tree expres-

sions and can therefore be used to match any reg-
ular tree language. Specifically, alternation can
be expressed with ! and (vertical) iteration with
ˆ@ and *. The example expression from (Comon,
2007) can be specified as (ˆ@ (* (cons 0
@)) nil), which matches Lisp expressions cor-
responding to lists of zero or more zeros. TTT
also differs from standard tree automata by lack
of an explicit state.

Nondeterminism and noncommutativity: In
general, given a set of transductions (or even a sin-
gle transduction) and an input tree there may be
several ways to apply the transductions, resulting
in different trees. This phenomenon comes from
three sources:

• Rule application order - transductions are not
in general commutative.

• Bindings - a pattern may have many sets of
consistent bindings to a tree (e.g., pattern
( * *1) can be bound to the tree (X Y
Z) in four distinct ways).

• Subtree search order - a single transduction
may be applicable to a tree in multiple lo-
cations (e.g., (/ ! X) could replace any
node of a tree, including the root, with a sin-
gle symbol).

Therefore some trees may have many reduced
forms with respect to a set of transductions (where
by reduced we mean a tree to which no trans-
ductions are applicable) and even more reachable
forms.

Our current implementation does not attempt to
enumerate possible transductions. Rather, for a
given tree and a list of transductions, each trans-
duction (in the order given) is applied in top-down
fashion at each feasible location (matching the
lhs), always using the first binding that results
from this depth-first, left-to-right (i.e., pre-order)
search. Our assumption is that the typical user has
a clear sense of the order in which transformations
are to be performed, and is working with rules that
do not interact in unexpected ways. For exam-
ple, consider the cases of PP misattachment men-
tioned earlier. In most cases, such misattachments
are disjoint (e.g., consider a caption reading “John
and Mary in front and David and Sue in the back”,
where both PPs may well have been attached to
the proper noun immediately to the left, instead



of to the appropriate conjunction). It is also pos-
sible for one rule application to change the context
of another, but this is not necessarily problematic.
For instance, suppose that in the sentence “John
drove the speaker to the airport in a hurry” the PP
“to the airport” has been misattached to the NP
for “the speaker” and that the PP “in a hurry” has
been misattached to the NP for “the airport”. Sup-
pose further that we have a repair rule that carries
a PP attached to an NP upward in the parse tree
until it reaches a VP node, reattaching the PP as a
child of that VP. (The repair rule might incorpo-
rate a computable predicate that detects a poor fit
between an NP and a PP that modifies it.) Then
the result will be the same regardless of the order
in which the two repairs are carried out. The dif-
ference is just that with a preorder discipline, the
second PP (“in a hurry”) will move upward by one
step less than if the order is reversed, because the
first rule application will have shortened the path
to the dominating VP by one step.

In the future it may be worthwhile to implement
exhaustive exploration of all possible matches and
expression rewrites, as has been done in Mathe-
matica. In general this would call for lazy compu-
tation, since the set of rewrites may be an infinite
set.

4 Some linguistic examples

Parse Tree Refinement: First, here is a sim-
ple transduction to delete empty brackets, which
sometimes occur in the Brown corpus: (/ ( *
() *1) ( * *1)).

To distinguish between past and passive partici-
ples, we want to search for the verb have, and
change the participle token correspondingly, as
discussed earlier. The next two transductions are
equivalent – the first is global and the second is an
example of a local or on-the-fly transduction. For
simplicity we consider only the has form of have.
Observe the more concise form, and simpler vari-
able specifications of the second transduction.

(/ (VP _* (VBZ HAS) _*1 (VBN _!) _*2)
(VP _* (VBZ HAS) _*1 (VBEN _!) _*2))

(VP _* (VBZ HAS) _* ((/ VBN VBEN) _!) _*)

To distinguish temporal and non-temporal
nominals, we use a computable predicate to de-
tect temporal nouns, and then annotate the NP tag
accordingly. (One more time, we show global and
local variants.)

(/ (NP * nn-temporal?)

(NP-TIME * nn-temporal?))

((/ NP NP-TIME) * nn-temporal?)

Assimilation of verb particles into single con-
stituents is useful to semantic interpretation, and
is accomplished with the transduction:

(/ (VP (VB \_!1)
(\{\} (PRT (RP _!2)) (NP _*1)))

(VP (VB _!1 _!2) (NP _*1)))

We often particularize PPs to show the
preposition involved, e.g., PP-OF, PP-FROM,
etc. Note that this transduction uses the
join-with-dash! function, which enables us
to avoid writing a separate transduction for each
preposition:
(/ (PP (IN !) *1)

((join-with-dash! PP !)
(IN !) *1))

Such a rule transforms subtrees such as (PP (IN

FROM)) by rewriting the PP tag as (PP-FROM

(IN FROM) .
As a final syntactic processing example (tran-

sitioning to discourse phenomena and semantics),
we illustrate the use of TTT in establishing poten-
tial coreferents licensed by C-command relations,
for the sentence mentioned earlier. We assume
that for reference purposes, NP nodes are deco-
rated with a SEM-INDEX feature (with an integer
value), and pronominal NPs are in addition deco-
rated with a CANDIDATE-COREF feature, whose
value is a list of indices (initially empty). Thus we
have the following parse structure for the sentence
at issue (where for understandabilty of the rela-
tively complex parse tree we depart from Tree-
bank conventions not only in the use of some ex-
plicit features but also in using linguistically more
conventional phrasal and part-of-speech category
names; R stands for relative clause):
(S ((NP SEM-INDEX 1) (NAME John))

(VP (V shows)
((NP SEM-INDEX 2) (NAME Lillian))
((NP SEM-INDEX 3) (DET the)
(N (N snowman)

(R (RELPRON that)
((S GAP NP)
((NP SEM-INDEX 4
CANDIDATE-COREF ())
(PRON he))
((VP GAP NP) (V built)
((NP SEM-INDEX 4)
(PRON *trace*)))))))))

Here is a TTT rule that adjoins the index of
a C-commanding NP node to the CANDIDATE-
COREF list of a C-commanded pronominal NP:
(_* ((NP _* SEM-INDEX _!. _*) _+) _*



(ˆ* ((NP _* CANDIDATE-COREF
(/ _!(adjoin! _!. _!)) _*) (PRON _!))) _*)

The NP on the first line is the C-commanding
NP, and note that we are using a sticky vari-
able ‘ !.’ for its index, since we need to use it
later. (None of the other match variables need
to be sticky, and we reuse ‘ *’ and ‘ !’ multi-
ple times.) The key to understanding the rule is
the constituent headed by ‘ˆ*’, which triggers a
search for a (right) sibling or descendant of a sib-
ling of the NP node that reaches an NP consisting
of a pronoun, and thus bearing the CANDIDATE-
COREF feature. This feature is replaced “on the
fly” by adjoining the index of the C-commanding
node (the value of ‘ !.’) to it. For the sample
tree, the result is the following (note the value
‘(1)’ of the CANDIDATE-COREF list):
(S ((NP SEM-INDEX 1) (NAME John))

(VP (V shows)
((NP SEM-INDEX 2) (NAME Lillian))
((NP SEM-INDEX 3) (DET the)
(N (N snowman)

(R (RELPRON that)
((S GAP NP)
((NP SEM-INDEX 4
CANDIDATE-COREF (1))
(PRON he))
((VP GAP NP) (V built)
((NP SEM-INDEX 4)
(PRON *trace*)))))))))

Of course, this does not yet incorporate number
and gender checks, but while these could be in-
cluded, it is preferable to gather candidates and
heuristically pare them down later. Thus repeated
application of the rule would also add the index 2
(for Lillian) to CANDIDATE-COREF.

Working with Logical Forms
Skolemization: Skolemization of an existential
formula of type (some x R S), where x is
a variable, R is a restrictor formula and S is the
nuclear scope, is performed via the transduction
(/ (some ! !1 !2)

(subst-new! ! ( !1 and.cc !2))).
The function subst-new! replaces all oc-
currences of a free variable symbol in an
expression with a new one. (We assume that
no variable occurs both bound and free in the
same expression.) It uses a TTT transduction
to accomplish this. For example, (some x

(x politician.n) (x honest.a)) be-
comes ((C1.skol politician.n) and.cc

(C1.skol honest.a)).
Inference: We can use the following rule to ac-

complish simple default inferences such as that if

most things with property P have property Q, and
most things with property Q have property R,
then (in the absence of knowledge to the contrary)
many things with property P also have property
R. (Our logical forms use infix syntax for predica-
tion, i.e., the predicate follows the “subject” argu-
ment. Predicates can be lambda abstracts, and the
computable boolean function pred? checks for
arbitrary predicative constructs.)
(/
(_* (most _!.1

(_!.1 (!.p pred?))
(_!.1 (!.q pred?)))

_* (most _!.2
(_!.2 !.q)
(_!.2 (!.r pred?))) _*)

(many _!.1 (_!.1 !.p) (_!.1 !.r)))

For example, ((most x (x dog.n) (x pet.n))

(most y (y pet.n) (x friendly.a))) yields
the default inference (many (x dog.n) (x

friendly.a)).
The assumption here is that the two most-

formulas are embedded in a list of formulas (se-
lected by the inference algorithm), and the three
occurrences of * allow for miscellaneous sur-
rounding formulas. (To allow for arbitrary or-
dering of formulas in the working set, we also
provide a variant with the two most-formulas in
reverse order.) Inference with tree transduction
rules has also been performed by (Koller and Ste-
fan, 2010).

Predicate Disambiguation: The following
rules are applicable to patterns of predica-
tion such as ((det dog.n have.v (det

tail.n)), ((det bird.n have.v (det

nest.n)), and ((det man.n) have.v

(det accident.n)). (Think of det as an
unspecified, unscoped quantifier.) The rules
simultaneously introduce plausible patterns of
quantification and plausible disambiguations of
the various senses of have.v (e.g., have as part,
possess, eat, experience):

(/ ((det (! animal?)) have.v
(det (!1 animal-part?)))

(all-or-most x (x !)
(some e ((pair x e) enduring)
(some y (y !1)
((x have-as-part.v y) ** e)))))

(/ ((det (! agent?)) have.v
(det (!1 possession?)))

(many x (x !)
(some e
(some y (y !1)
(x possess.v y) ** e))))



(/ ((det (! animal?)) have.v
(det (!1 food?)))

(many x (x !)
(occasional e
(some y (y !1)
(x eat.v y) ** e))))

(/ ((det (! person?)) have.v
(det (!1 event?)))

(many x (x !)
(occasional e
(some y (y !1)
((x experience.v y) ** e)))))

Computable predicates such as animal? and
event? are evaluated with the help of WordNet
and other resources. Details of the logical form
need not concern us, but it should be noted that
the ‘**’ connects sentences to events they charac-
terize much as in various other theories of events
and situations.

Thus, for example, ((det dog.n have.v
(det tail.n)) is mapped to:

(all-or-most x (x dog.n
(some e ((pair x e) enduring)
(some y (y tail.n)
((x have-as-part.v y) ** e)))))

This expresses that for all or most dogs, the dog
has an enduring attribute (formalized as an agent-
event pair) of having a tail as a part.

Logical Interpretation: The following trans-
ductions directly map some simple parse trees to
logical forms. The rules, applied as often as possi-
ble to a parse tree, replace all syntactic constructs,
recognizable from (Treebank-style) phrase head-
ers like (JJ ...), (NP ...), (VP ...), (S
...), etc., by corresponding semantic constructs.
For example, “The dog bit John Doe”, parsed as

(S (NP (DT the) (NN dog))
(VP (VBD bit)

(NP (NNP John) (NNP Doe))))

yields (the x (x dog.n) (x bit.v

John Doe.name)).
Type-extensions such as ‘.a’, ‘.n’, and ‘.v’

indicate adjectival, nominal, and verbal predi-
cates, and the extension ‘.name’ indicates an in-
dividual constant (name); these are added by the
functions make-adj!, make-noun!, and so
on. The fourth rule below combines two succes-
sive proper nouns (NNPs) into one. We omit event
variables, tense and other refinements.
(/ (JJ !) (make-adj! !))
(/ (NN !) (make-noun! !))
(/ (VBD !) (make-verb! !))

(/ ( *.a (NNP !.1) (NNP !.2) *.b)
( *.a (NNP !.1 !.2) *.b))

(/ (NNP +) (make-name! ( +)))
(/ (NP !) !)
(/ (S (NP (DT the) !) (VP +))
(the x (x !) (x +))

These rules are illustrative only, and are not
fully compositional, as they interpret an NP with
a determiner only in the context of a senten-
tial subject, and a VP only in the context of a
sentential predicate. Also, by scoping the vari-
able of quantification, they do too much work at
once. A more general approach would use com-
positional rules such as (/ (S (!1 NP?) (!2

VP?)) ((sem! !1) (sem! !2))), where the
sem! function again makes use of TTT, re-
cursively unwinding the semantics, with rules
like the first five above providing lexical-level
sem!-values.

We have also experimented with rendering log-
ical forms back into English, which is rather eas-
ier, mainly requiring dropping of variables and
brackets and some reshuffling of constituents.

5 Conclusion

The TTT language is well-suited to the applica-
tions it was aimed at, and is already proving use-
ful in current syntactic/semantic applications. It
provides a very concise, transparent way of speci-
fying transformations that previously required ex-
tensive symbolic processing. Some remaining is-
sues are efficient access to, and deployment of,
rules that are locally relevant to a transduction;
and heuristics for executing matches and trans-
ductions more efficiently (e.g., recognizing vari-
ous cases where a complex rule cannot possibly
match a given tree, because the tree lacks some
constituents called for by the rule; or use of ef-
ficient methods for matching regular-expression
subpatterns).

The language also holds promise for rule-
learning, thanks to its simple template-to-
template basic syntax. The kinds of learning en-
visioned are learning parse-tree repair rules, and
perhaps also LF repair rules and LF-to-English
rules.
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