
Objective-CL

Objective-C­like syntax for Common Lisp

Bugs
The type-specifiers are not defined yet. I need to learn about ccl FFI and perhaps add a syntax,
or at least improve the reading of type-specifiers. Notably, for now there's merely read in the
keyword package so we cannot give type specifiers such as: (NSRect) or (NSWindow*).

Motivation
The purpose of this package is to provide a few reader macros implementing a syntax like Objective-C to
program with Objective-C FFI such as the ccl Objective-C bridge.

The principles of the Objective-C syntax is that it is a small set of extensions over the syntax of the base
language (C in the case of Objective-C). Namely:

• message sending expressions are put inside brackets (inspired from Smalltalk block notation), and
have basically the Smalltalk message sending syntax.

• class declarations and definitions (interface and implementation) and other Objective-C specific
elements use keywords prefixed by the #\@ character.

The later is a little at odd with lisp nature, where every form is an expression, and where parenthesized
syntax is prefered. We will therefore provide a more Smalltalk-like way to define classes and methods
(while retaining the #\@ character as prefix for some symbols, and as a reader macro to read Objective-C
string literals).

Principles
Two reader macros are provided:

• a reader macro bound to #\[is used to parse message sending expressions, just like in Objective-C,
but since the underlying language is lisp, sub-expressions starting with parentheses are read just like
normal sexps (they may further contain Objective-CL syntax).

• a reader macro bound to #\@ which is used to read:

• an Objective-C literal strings when followed by a double-quote starting a lisp string.

• a class or method definition expression, when followed by an opening bracket #\[. The
syntax used for these definition expression is similar to the message sending syntax, but
it's processed more like a special operator or macro than a real message sending: the
sub-expression are evaluated with different rules that depend on the operation. It's called a
pseudo-message.

• a normal lisp symbol otherwise.
¶

These reader macros expand to normal lisp forms, using symbols exported from a portability layer
package, nicknamed OCLO, which should be implemented specifically for each Objective-C bridge or FFI.
The implementation of this bridge is out of scope of these syntax- providing reader macros.

Message Sending
The syntax is:

objcl-message-expr := '[' message-send ']' .

message-send := recipient message .
recipient := sexp | class-name | 'super' | 'self' .
class-name := objcl-identifier .

message := simple-selector | compound-selector final-arguments .

simple-selector := objcl-identifier .
compound-selector := objcl-identifier ':' sexp compound-selector
 | objcl-identifier ':' sexp .
final-arguments := | '(' type-identifier ')' sexp final-arguments .
type-identifier := symbol .

-- FIXME type-identifier; perhaps we need:
-- type-identifier := symbol | symbol sexp .
-- for example: (char *)cString (array (int 10))tenInts ?
-- Check with what is available at the FFI/bridge level.

An objcl-identifier is a case sensitive identifier that is converted to a lisp symbol according to the
rules of Objective-C to Common Lisp identifier translation.

A sexp is a normal lisp expression, which might be another message sending bracketed expression (or
another Objective-CL form).

There should be no space between the objcl-identifier and the colon. After the first
objcl-identifier in a compound-selector, the remaining objcl-identifiers can be absent, in
which case the colon must be separated from the previous expression by a space.

When recipient is super, an (oclo:send-super self ...) form is returned. FIXME document the
other forms returned.

Examples:

[self update]

[window orderFront:sender]

[array performSelector:(@selector "drawRect:") withObject:rect]

(let ((o [[NSObject alloc] init]))
 [NSArray arrayWithObjects:o (id)o (id)o (id)nil])

'[array performSelector:(@selector "drawRect:") withObject:rect]
→ (OBJC:SEND ARRAY :PERFORM-SELECTOR (@SELECTOR "drawRect:") :WITH-OBJECT RECT)

Class definition
Classes are created by sending a subClass:slots: pseudo-message to its superclass.

The syntax is :

objcl-definition := '@[' class-definition | instance-method-definition | class-method-definition ']' .

class-definition := super-class-name 'subClass:' class-name 'slots:' '(' slots ')' .

class-name := objcl-identifier .
super-class-name := objcl-identifier .
slots := | slot slots .
slot := lisp-slot | objcl-slot .
lisp-slot := slot-specifier . -- see clhs defclass.

-- objcl-slot := ... -- not defined yet.
-- We'd want some simplified definition, and using Obj-C names.

Examples:

@[NSObject subClass:SpaceShip
 slots:((position :accessor ship-position :initform (make-position))
 (speed :accessor ship-speed :initform 0.0))]

Method definition
Class and instance methods are defined by sending a pseudo-message to the class, either
method:resultType:body: to create an instance method, or classMethod:resultType:body: to
create a class method.

The syntax is :

objcl-definition := '@[' class-definition | instance-method-definition | class-method-definition ']' .

instance-method-definition := class-name 'method:' '(' signature ')'
 'resultType:' '(' type-identifier ')'
 'body:' body .

class-method-definition := class-name 'classMethod:' '(' signature ')'
 'resultType:' '(' type-identifier ')'
 'body:' body .

class-name := objcl-identifier .
signature := simple-signature | compound-signature final-signature .
simple-signature := objcl-identifier .
compound-signature := objcl-identifier ':' '(' type-identifier ')' objcl-identifier compound-signature
 | objcl-identifier ':' '(' type-identifier ')' objcl-identifier .
final-signature := '&rest' objcl-identifier .
body := | sexp body .

-- FIXME type-identifier; perhaps we need:
-- type-identifier := symbol | symbol sexp .
-- for example: (char *)cString (array (int 10))tenInts ?
-- Check with what is available at the FFI/bridge level.

There should be no space between the objcl-identifier and the colon. After the first
objcl-identifier in a compound-selector, the remaining objcl-identifiers can be absent, in
which case the colon must be separated from the previous expression by a space.

Examples:

@[SpaceShip classMethod:(shipAtPosition:(Position)aPosition)
 resultType:(id)
 body:(let ((new-ship [[self alloc] init]))
 [new-ship setPosition:aPosition]
 new-ship)]

@[SpaceShip method:(moveToward:(Direction)aDirection atSpeed:(double)velocity)

 resultType:(id)
 body:(let ((new-pos [[self position] offset:...]))
 (do-something new-pos)
 [self setPosition:new-pos])]

String literals
The syntax read is:

objcl-string-literal := '@"' { character } '"' .

A CL string is read (ie. with the same escaping rules as normal CL strings), and an (oclo:@ "string") form
is returned.

Examples:

@"Untitled"
@"String with \"quotes\" and \\ backslash."
@"String with
new lines"

	Bugs
	Motivation
	Principles
	Message Sending
	Class definition
	Method definition
	String literals

