Objective-CL
Objective-C-like syntax for Common Lisp

Bugs

The t ype-speci fi ers are not defined yet. | need to learn about ccl FFI and perhaps add a syntax,
or at least improve the reading of t ype-specifiers. Notably, for now there's merely read in the
keyword package so we cannot give type specifiers such as: (NSRect) or (NSWindow?*).

Motivation

The purpose of this package is to provide a few reader macros implementing a syntax like Objective-C to
program with Objective-C FFI such as the ccl Objective-C bridge.

The principles of the Objective-C syntax is that it is a small set of extensions over the syntax of the base
language (C in the case of Objective-C). Namely:

» message sending expressions are put inside brackets (inspired from Smalltalk block notation), and
have basically the Smalltalk message sending syntax.

« class declarations and definitions (interface and implementation) and other Objective-C specific
elements use keywords prefixed by the #\@ character.
The later is a little at odd with lisp nature, where every form is an expression, and where parenthesized
syntax is prefered. We will therefore provide a more Smalltalk-like way to define classes and methods
(while retaining the #\@ character as prefix for some symbols, and as a reader macro to read Objective-C
string literals).

Principles

Two reader macros are provided:

* a reader macro bound to #\[is used to parse message sending expressions, just like in Objective-C,
but since the underlying language is lisp, sub-expressions starting with parentheses are read just like
normal sexps (they may further contain Objective-CL syntax).

» a reader macro bound to #\@ which is used to read:

« an Objective-C literal strings when followed by a double-quote starting a lisp string.

 a class or method definition expression, when followed by an opening bracket #\[. The
syntax used for these definition expression is similar to the message sending syntax, but
it's processed more like a special operator or macro than a real message sending: the
sub-expression are evaluated with different rules that depend on the operation. It's called a
pseudo-message.

 a normal lisp symbol otherwise.
1

These reader macros expand to normal lisp forms, using symbols exported from a portability layer
package, nicknamed OCLO, which should be implemented specifically for each Objective-C bridge or FFI.
The implementation of this bridge is out of scope of these syntax- providing reader macros.

Message Sending

The syntax is:

obj cl - message- expr ‘[nessage-send ']°
message- send
reci pi ent

cl ass- nane

reci pi ent nessage .
sexp | class-name | 'super' | ‘'self’
objcl-identifier

message

si mpl e- sel ect or
compound- sel ect or

objcl-identifier
objcl-identifier
objcl-identifier ':' sexp .

final -argunments
type-identifier

symbol

-- FIXME type-identifier; perhaps we need:

-- type-identifier := synbol | synbol sexp .

-- for exanple: (char *)cString (array (int 10))tenints ?
-- Check with what is available at the FFI/bridge |evel.

si mpl e-sel ector | conmpound-sel ector final-argunents .

sexp conpound- sel ect or

| "(' type-identifier ')' sexp final-argunents .

An objcl -identifier isa case sensitive identifier that is converted to a lisp symbol according to the

rules of Objective-C to Common Lisp identifier translation.

A sexp is a normal lisp expression, which might be another message sending bracketed expression (or

another Objective-CL form).

There should be no space between the objcl-identifier and the colon. After the first

objcl-identifier ina compound-selector, the remaining obj cl -i dentifiers can be absent, in

which case the colon must be separated from the previous expression by a space.

When recipient is super, an (ocl o: send-super self ...) form is returned.
other forms returned.

Examples:
[sel f updat €]
[wi ndow or der Front : sender]
[array perfornBel ector: (@el ector "drawRect:") w thCbject:rect]
(let ((o [[NSOoject alloc] init]))

[NSArray arrayWthObjects:o (id)o (id)o (id)nil])

"[array perforntel ector: (@el ector "drawRect:") w thObject:rect]

FIXME document the

— (OBJC. SEND ARRAY : PERFORM SELECTOR (@GBELECTOR "drawRect: ") : W TH OBJECT RECT)

Class definition

Classes are created by sending a subCl ass: sl ot s: pseudo-message to its superclass.

The syntax is :

obj cl -definition 1= '@' class-definition | instance-nethod-definition | class-nmethod-definition ']"

cl ass-definition .= super-cl ass-nane 'subCl ass:' class-name 'slots:' '('

slots ")*

objcl-identifier
objcl-identifier

cl ass- nane
super - cl ass- nane

slots = | slot slots

sl ot = lisp-slot | objcl-slot

l'isp-slot = slot-specifier . -- see clhs defcl ass.
-- objcl-slot 1= -- not defined yet.

-- W'd want sone sinplified definition, and using Obj-C nanes.

Examples:

@ NSObj ect subd ass: SpaceShi p
slots: ((position :accessor ship-position :initform (nmake-position))
(speed :accessor shi p-speed initform0.0))]

Method definition

Class and instance methods are defined by sending a pseudo-message to the class, either
net hod: resul t Type: body: to create an instance method, or cl assMet hod: resul t Type: body: to
create a class method.

The syntax is :

obj cl -definition :='@' class-definition | instance-nethod-definition | class-nmethod-definition ']"
i nstance-nmet hod-definition := class-nane 'nethod:' '(' signature ")’
"resul t Type:' '(' type-identifier ")’
'body:"' body .
cl ass-net hod-definition ;= class-nane 'classMethod:' ' (' signature ')’
‘resultType:' '(' type-identifier ")’
' body:"' body .
cl ass- nane objcl-identifier .

si npl e-si gnature | conpound-signature final-signature .
objcl-identifier .

signature
si npl e-si gnature

conpound-si gnature := objcl-identifier ':' '(' type-identifier ')' objcl-identifier conpound-signature
objcl-identifier ":'" '"(' type-identifier ")' objcl-identifier .

final -signature "&rest' objcl-identifier .

body | sexp body .

-- FIXME type-identifier; perhaps we need:

- type-identifier ;= synbol | synbol sexp .

-- for exanple: (char *)cString (array (int 10))tenints ?
- Check with what is available at the FFI/bridge |evel.

There should be no space between the objcl-identifier and the colon. After the first
objcl-identifier ina compound-selector, the remaining obj cl -identifiers can be absent, in
which case the colon must be separated from the previous expression by a space.

Examples:

@ SpaceShi p cl assMet hod: (shi pAt Posi ti on: (Posi tion)aPosition)
resul t Type: (id)
body: (Il et ((newship [[self alloc] init]))
[new shi p set Position:aPosition]
new ship) 1]

@ SpaceShi p et hod: (nmoveToward: (Di rection)abDirecti on at Speed: (doubl e)vel ocity)

resul t Type: (i d)
body: (l et ((newpos [[self position] offset:...]))
(do- somet hi ng new pos)
[sel f setPosition: new pos])]

String literals

The syntax read is:

objcl-string-literal :="'@"' { character } "'

A CL string is read (ie. with the same escaping rules as normal CL strings), and an (oclo:@ "string") form
is returned.

Examples:

@Uuntitled"

@String with \"quotes\" and \\ backsl ash."
@String with

new | i nes"

	Bugs
	Motivation
	Principles
	Message Sending
	Class definition
	Method definition
	String literals

